Range Sum Query 2D - Mutable
Question
Given a 2D matrix, find the sum of the elements inside the rectangle defined by (row1, col1), (row2, col2).
Analysis
Same as the sub-Sum approach, this method uses another data structure which averages the time complexity of Search
and Update
query both to O(lgn).
___________________
| | |
| | |
|______a|_________b|
| | |
| | |
| | S |
| | |
|______c|_________d|
S=sum(d)+sum(a)-sum(b)-sum(c)
Refer to the Binary Indexed Tree tutorial
Solution
public class NumMatrix {
int[][] tree;
int[][] nums;
int m;
int n;
public NumMatrix(int[][] matrix) {
if (matrix.length == 0 || matrix[0].length == 0) return;
m = matrix.length;
n = matrix[0].length;
tree = new int[m+1][n+1];
nums = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
update(i, j, matrix[i][j]);
}
}
}
public void update(int row, int col, int val) {
if (m == 0 || n == 0) return;
int delta = val - nums[row][col];
nums[row][col] = val;
for (int i = row + 1; i <= m; i += i & (-i)) {
for (int j = col + 1; j <= n; j += j & (-j)) {
tree[i][j] += delta;
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
if (m == 0 || n == 0) return 0;
return sum(row2, col2) + sum(row1-1, col1-1) - sum(row1-1, col2) - sum(row2, col1-1);
}
public int sum(int row, int col) {
int sum = 0;
for (int i = row+1; i > 0; i -= i & (-i)) {
for (int j = col+1; j > 0; j -= j & (-j)) {
sum += tree[i][j];
}
}
return sum;
}
}